Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Abstract Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon‐polaritons that allow for low‐loss, subdiffractional control of light. The properties of phonon‐polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most “bulk” materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so‐called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm−1. These results provide an alternative pathway toward designer IR optical materials.more » « less
- 
            Abstract The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many‐body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First‐principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low‐dimensional magnetism.more » « less
- 
            Abstract The far‐infrared (far‐IR) remains a relatively underexplored region of the electromagnetic spectrum extending roughly from 20 to 100 µm in free‐space wavelength. Research within this range has been restricted due to a lack of optical materials that can be optimized to reduce losses and increase sensitivity, as well as by the long free‐space wavelengths associated with this spectral region. Here the exceptionally broad Reststrahlen bands of two Hf‐based transition metal dichalcogenides (TMDs) that can support surface phonon polaritons (SPhPs) within the mid‐infrared (mid‐IR) into the terahertz (THz) are reported. In this vein, the IR transmission and reflectance spectra of hafnium disulfide (HfS2) and hafnium diselenide (HfSe2) flakes are measured and their corresponding dielectric functions are extracted. These exceptionally broad Reststrahlen bands (HfS2: 165 cm−1; HfSe2: 95 cm−1) dramatically exceed that of the more commonly explored molybdenum‐ (Mo) and tungsten‐ (W) based TMDs (≈5–10 cm−1), which results from the over sevenfold increase in the Born effective charge of the Hf‐containing compounds. This work therefore identifies a class of materials for nanophotonic and sensing applications in the mid‐ to far‐IR, such as deeply sub‐diffractional hyperbolic and polaritonic optical antennas, as is predicted via electromagnetic simulations using the extracted dielectric function.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
